

Solving quadratic equations

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 1 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

1 Write
$$x^{2} + bx + c = 0$$
 in the form
$$(x + 3)^{2} - 9 + 4 = 0$$

$$(x + 3)^{2} - 5 = 0$$

$$(x + 3)^{2} = 5$$
2 Simplify.
3 Rearrange the equation to work out x . First, add 5 to both sides.

- 5 Subtract 3 from both sides to solve the equation.
- 6 Write down both solutions.

Example 2 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$

$$2x^{2} - 7x + 4 = 0$$

$$2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$$

$$2\left[\left(x - \frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right] + 4 = 0$$
1 Before completing the square write $ax^{2} + bx + c$ in the form $a\left(x^{2} + \frac{b}{a}x\right) + c$
2 Now complete the square by writing $ax + bx + c$ in the form $ax + c$ in the

$$\begin{bmatrix} x - \frac{7}{4} \end{bmatrix} - \left(\frac{7}{4}\right) \end{bmatrix} + 4 = 0$$

$$x^2 - \frac{7}{2}x \text{ in the form}$$

$$\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$$

$$2\left(x - \frac{7}{4}\right)^2 - \frac{49}{8} + 4 = 0$$

$$2\left(x - \frac{7}{4}\right)^2 - \frac{17}{8} = 0$$
3 Expand the square brackets.

4 Simplify.

(continued on next page)

$$2\left(x - \frac{7}{4}\right)^2 = \frac{17}{8}$$

$$\left(x - \frac{7}{4}\right)^2 = \frac{17}{16}$$

$$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$$

$$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$$

$$2\left(x - \frac{7}{4}\right)^2 = \frac{17}{8}$$

$$\left(x - \frac{7}{4}\right)^2 = \frac{17}{16}$$

$$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$$

$$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$$
So $x = \frac{7}{4} - \frac{\sqrt{17}}{4}$ or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$

- 5 Rearrange the equation to work out
 - x. First, add $\frac{17}{8}$ to both sides.
- **6** Divide both sides by 2.
- Square root both sides. Remember that the square root of a value gives two answers.
- 8 Add $\frac{7}{4}$ to both sides.
- **9** Write down both the solutions.

Practice questions

Solve by completing the square.

$$\mathbf{a}$$
 $x^2 - 4x - 3 = 0$

b
$$x^2 - 10x + 4 = 0$$

$$x^2 + 8x - 5 = 0$$

d
$$x^2 - 2x - 6 = 0$$

$$e 2x^2 + 8x - 5 = 0$$

$$\mathbf{f} = 5x^2 + 3x - 4 = 0$$

2 Solve by completing the square.

a
$$(x-4)(x+2)=5$$

b
$$2x^2 + 6x - 7 = 0$$

$$x^2 - 5x + 3 = 0$$

Hint

Get all terms onto one side of the equation.

$$f(x) = x^2 - 10x + 23$$

- (a) Express f(x) in the form $(x + a)^2 + b$, where a and b are constants to be found.
- (b) Hence, or otherwise, find the exact solutions to the equation

$$x^2 - 10x + 23 = 0$$

(c) Use your answer to part (b) to find the larger solution to the equation

$$y - 10y^{0.5} + 23 = 0$$

Write your solution in the form $p + q\sqrt{r}$, where p, q and r are integers.

Answers

1 **a**
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$

1 **a**
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$ **b** $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$

c
$$x = -4 + \sqrt{21}$$
 or $x = -4 - \sqrt{21}$ **d** $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$

d
$$x = 1 + \sqrt{7} \text{ or } x = 1 - \sqrt{7}$$

e
$$x = -2 + \sqrt{6.5}$$
 or $x = -2 - \sqrt{6.5}$

e
$$x = -2 + \sqrt{6.5}$$
 or $x = -2 - \sqrt{6.5}$ f $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$

2 **a**
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$

2 a
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$ **b** $x = \frac{-3 + \sqrt{23}}{2}$ or $x = \frac{-3 - \sqrt{23}}{2}$

$$\mathbf{c}$$
 $x = \frac{5 + \sqrt{13}}{2}$ or $x = \frac{5 - \sqrt{13}}{2}$

3 a
$$x^2 - 10x + 23 = (x \pm 5)^2 \pm A$$

$$(x-5)^2-2$$

$$\mathbf{b} \qquad \left(x \pm 5\right)^2 - A \Longrightarrow x = \dots$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \Rightarrow x = \dots$$

$$\left(x = \frac{10 \pm \sqrt{10^2 - 4(1)(23)}}{2}\right)$$

$$x = 5 \pm \sqrt{2}$$

$$\mathbf{c} \qquad \left(5 \pm \sqrt{2}\right)^2 = 27 + 10\sqrt{2}$$

$$=27+10\sqrt{2}$$