

Rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Example 1 Rationalise $\frac{1}{\sqrt{3}}$

$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	1 Multiply the numerator and denominator by $\sqrt{3}$
$=\frac{1\times\sqrt{3}}{\sqrt{9}}$	2 Use $\sqrt{9} = 3$
$=\frac{\sqrt{3}}{3}$	

Example 2	Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$		
	$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$	1	Multiply the numerator and denominator by $\sqrt{12}$
	$=\frac{\sqrt{2}\times\sqrt{4\times3}}{12}$	2	Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12. One of the factors must be a square number
	$=\frac{2\sqrt{2}\sqrt{3}}{12}$	3 4	Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ Use $\sqrt{4} = 2$
	$=\frac{\sqrt{2}\sqrt{3}}{6}$	5	Simplify the fraction: $\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 2	Dationaliza and simplify	3
Example 3	Rationalise and simplify	$2+\sqrt{5}$

$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1 Multiply the numerator and denominator by $2 - \sqrt{5}$
$=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$	2 Expand the brackets
$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3 Simplify the fraction
$= \frac{6-3\sqrt{5}}{-1}$ $= 3\sqrt{5}-6$	 4 Divide the numerator by −1 Remember to change the sign of all terms when dividing by −1

Practice questions

1 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$
b $\frac{1}{\sqrt{11}}$ c $\frac{2}{\sqrt{7}}$ d $\frac{2}{\sqrt{8}}$ e $\frac{2}{\sqrt{2}}$ f $\frac{5}{\sqrt{5}}$ g $\frac{\sqrt{8}}{\sqrt{24}}$ h $\frac{\sqrt{5}}{\sqrt{45}}$

2 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

3 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Answers

 $\frac{\sqrt{5}}{5}$ $\frac{\sqrt{11}}{11}$ $\frac{\sqrt{2}}{2}$ $\sqrt{5}$ a 1 b $\frac{2\sqrt{7}}{7}$ $\sqrt{2}$ c d e f $\frac{\sqrt{3}}{3}$ $\frac{1}{3}$ g h a $\frac{3+\sqrt{5}}{4}$ 2

b
$$\frac{2(4-\sqrt{3})}{13}$$

$$\frac{6(5+\sqrt{2})}{23}$$

с

3 a
$$3+2\sqrt{2}$$
 b $\frac{\sqrt{x}+\sqrt{y}}{x-y}$